Astronomy and Astrophysics – Astrophysics
Scientific paper
2001-01-26
Astronomy and Astrophysics
Astrophysics
13 pages, LaTeX, submitted to A&A
Scientific paper
10.1051/0004-6361:20010797
We perform global three-dimensional simulations of accretion disks integrating the compressible, non-viscous, but diffusive MHD equations. The disk is supposed to be isothermal. We make use of the ZEUS-3D code integrating the MHD equations and added magnetic diffusivity. We measure the efficiency of the angular-momentum transport. Various model simulations delivered transport parameters of alpha_SS=0.01 to 0.05 which are consistent with several local numerical investigations. Two of the models reach a highly turbulent state at which alpha_SS is of the order of 0.1. After a certain stage of saturating of the turbulence, Reynolds stress is found to be negative (inward transport) in many of the models, whereas Maxwell stresses dominate and deliver a positive (outward) total transport. Several of the models yield strongly fluctuating Reynolds stresses, while Maxwell stresses are smooth and always transport outwards. Dynamo action is found in the accretion disk simulations. A positive dynamo-alpha is indicated in the northern hemisphere of the most prominent run, coming along with negative kinetic and current helicities (all having the opposite sign on the southern side). The dipolar structure of the magnetic field is maintained throughout the simulations, although indication for a decay of antisymmetry is found. The simulations covered relatively thick disks, and results of thin-disk dynamo models showing quadrupolar fields may not be compatible with the results presented here.
Arlt Rainer
Rudiger Günther
No associations
LandOfFree
Global accretion disk simulations of magneto-rotational instability does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Global accretion disk simulations of magneto-rotational instability, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Global accretion disk simulations of magneto-rotational instability will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-389543