Mathematics – Statistics Theory
Scientific paper
2009-09-04
Bernoulli 2009, Vol. 15, No. 3, 736-753
Mathematics
Statistics Theory
Published in at http://dx.doi.org/10.3150/08-BEJ172 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statisti
Scientific paper
10.3150/08-BEJ172
The statistical literature discusses different types of Markov properties for chain graphs that lead to four possible classes of chain graph Markov models. The different models are rather well understood when the observations are continuous and multivariate normal, and it is also known that one model class, referred to as models of LWF (Lauritzen--Wermuth--Frydenberg) or block concentration type, yields discrete models for categorical data that are smooth. This paper considers the structural properties of the discrete models based on the three alternative Markov properties. It is shown by example that two of the alternative Markov properties can lead to non-smooth models. The remaining model class, which can be viewed as a discrete version of multivariate regressions, is proven to comprise only smooth models. The proof employs a simple change of coordinates that also reveals that the model's likelihood function is unimodal if the chain components of the graph are complete sets.
No associations
LandOfFree
Discrete chain graph models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Discrete chain graph models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Discrete chain graph models will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-35730