Astronomy and Astrophysics – Astrophysics
Scientific paper
1995-09-04
Astrophys.J.462:576,1996
Astronomy and Astrophysics
Astrophysics
27 pages, compressed postscript, no figures, html and postscript copies with figures available on http://ucowww.ucsc.edu/~du
Scientific paper
10.1086/177174
We use simulations of merging galaxies to explore the sensitivity of the morphology of tidal tails to variations of the halo mass distributions in the parent galaxies. Our goal is to constrain the mass of dark halos in well-known merging pairs. We concentrate on prograde encounters between equal mass galaxies which represent the best cases for creating tidal tails, but also look at systems with different relative orientations, orbital energies and mass ratios. As the mass and extent of the dark halo increase in the model galaxies, the resulting tidal tails become shorter and less massive, even under the most favorable conditions for producing these features. Our simulations imply that the observed merging galaxies with long tidal tails ($\sim 50-100$ kpc) such as NGC 4038/39 (the Antennae) and NGC 7252 probably have halo:disk+bulge mass ratios less than 10:1. These results conflict with the favored values of the dark halo mass of the Milky Way derived from satellite kinematics and the timing argument which give a halo:disk+bulge mass ratio of $\sim 30:1$. However, the lower bound of the estimated dark halo mass in the Milky Way (mass ratio $\sim 10:1$) is still consistent with the inferred tidal tail galaxy masses. Our results also conflict with the expectations of $\Omega=1$ cosmologies such as CDM which predict much more massive and extended dark halos.
Dubinski John
Hernquist Lars
Mihos James Christopher
No associations
LandOfFree
Using Tidal Tails to Probe Dark Matter Halos does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Using Tidal Tails to Probe Dark Matter Halos, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Using Tidal Tails to Probe Dark Matter Halos will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-356582