Mathematics – Probability
Scientific paper
2009-12-18
Mathematics
Probability
Scientific paper
In this note, we establish optimal lower and upper Gaussian bounds for the density of the solution to a class of stochastic integral equations driven by an additive spatially homogeneous Gaussian random field. The proof is based on the techniques of the Malliavin calculus and a density formula obtained by Nourdin and Viens. Then, the main result is applied to the mild solution of a general class of SPDEs driven by a Gaussian noise which is white in time and has a spatially homogeneous correlation. In particular, this covers the case of the stochastic heat and wave equations in $\mathbb{R}^d$ with $d\geq 1$ and $d\leq 3$, respectively. The upper and lower Gaussian bounds have the same form and are given in terms of the variance of the stochastic integral term in the mild form of the equation.
Nualart David
Quer-Sardanyons Lluis
No associations
LandOfFree
Optimal Gaussian density estimates for a class of stochastic equations with additive noise does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Optimal Gaussian density estimates for a class of stochastic equations with additive noise, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimal Gaussian density estimates for a class of stochastic equations with additive noise will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-349938