Astronomy and Astrophysics – Astrophysics – Cosmology and Extragalactic Astrophysics
Scientific paper
2009-03-23
Astronomy and Astrophysics
Astrophysics
Cosmology and Extragalactic Astrophysics
19 pages, 25 figures, A&A accepted, high resolution version can be found at http://astro.uibk.ac.at/~wolfgang/kapferer_rps_gal
Scientific paper
We investigate the dependence of star formation and the distribution of the components of galaxies on the strength of ram pressure. Several mock observations in X-ray, H$\alpha$ and HI wavelength for different ram-pressure scenarios are presented. By applying a combined N-body/hydrodynamic description (GADGET-2) with radiative cooling and a recipe for star formation and stellar feedback 12 different ram-pressure stripping scenarios for disc galaxies were calculated. Special emphasis was put on the gas within the disc and in the surroundings. All gas particles within the computational domain having the same mass resolution. The relative velocity was varied from 100 km/s to 1000 km/s in different surrounding gas densities in the range from $1\times10^{-28}$ to $5\times10^{-27}$ g/cm$^3$. The temperature of the surrounding gas was initially $1\times10^{7}$ K. The star formation of a galaxy is enhanced by more than a magnitude in the simulation with a high ram-pressure ($5\times10^{-11}$ dyn/cm$^2$) in comparison to the same system evolving in isolation. The enhancement of the star formation depends more on the surrounding gas density than on the relative velocity. Up to 95% of all newly formed stars can be found in the wake of the galaxy out to distances of more than 350 kpc behind the stellar disc. Continuously stars fall back to the old stellar disc, building up a bulge-like structure. Young stars can be found throughout the stripped wake with surface densities locally comparable to values in the inner stellar disc. Ram-pressure stripping can shift the location of star formation from the disc into the wake on very short timescales. (Abridged)
Ferrari Cecile
Kapferer Wolfgang
Schindler Sabine
Sluka Constantin
Ziegler Bodo
No associations
LandOfFree
The effect of ram pressure on the star formation, mass distribution and morphology of galaxies does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The effect of ram pressure on the star formation, mass distribution and morphology of galaxies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The effect of ram pressure on the star formation, mass distribution and morphology of galaxies will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-346240