The RMS Survey: Ammonia and water maser analysis of massive star forming regions

Astronomy and Astrophysics – Astrophysics – Galaxy Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

17 pages and 17 figures and 8 tables. Tables\,2 and 5 and full versions of Figs. 3 and 7 are only available in electronic form

Scientific paper

The Red MSX Source (RMS) survey has identified a sample of ~1200 massive young stellar objects (MYSOs), compact and ultra compact HII regions from a sample of ~2000 MSX and 2MASS colour selected sources. We have used the 100 m Green Bank telescope to search for 22-24 GHz water maser and ammonia (1,1), (2,2) and (3,3) emission towards ~600 RMS sources located within the northern Galactic plane. We have identified 308 H2O masers which corresponds to an overall detection rate of ~50%. Abridged: We detect ammonia emission towards 479 of these massive young stars, which corresponds to ~80%. Ammonia is an excellent probe of high density gas allowing us to measure key parameters such as gas temperatures, opacities, and column densities, as well as providing an insight into the gas kinematics. The average kinetic temperature, FWHM line width and total NH3 column density for the sample are approximately 22 K, 2 km/s and 2x10^{15} cm^{-2}, respectively. We find that the NH3 (1,1) line width and kinetic temperature are correlated with luminosity and finding no underlying dependence of these parameters on the evolutionary phase of the embedded sources, we conclude that the observed trends in the derived parameters are more likely to be due to the energy output of the central source and/or the line width-clump mass relationship. The velocities of the peak H2O masers and the NH3 emission are in excellent agreement with each other, which would strongly suggest an association between the dense gas and the maser emission. Moreover, we find the bolometric luminosity of the embedded source and the isotropic luminosity of the H2O maser are also correlated. We conclude from the correlations of the cloud and water maser velocities and the bolometric and maser luminosity that there is a strong dynamical relationship between the embedded young massive star and the H2O maser.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The RMS Survey: Ammonia and water maser analysis of massive star forming regions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The RMS Survey: Ammonia and water maser analysis of massive star forming regions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The RMS Survey: Ammonia and water maser analysis of massive star forming regions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-34531

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.