Information-theoretic model selection applied to supernovae data

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

11 pages, JCAP accepted

Scientific paper

10.1088/1475-7516/2007/02/003

There are several different theoretical ideas invoked to explain the dark energy with relatively little guidance of which one of them might be right. Therefore the emphasis of ongoing and forthcoming research in this field shifts from estimating specific parameters of cosmological model to the model selection. In this paper we apply information-theoretic model selection approach based on Akaike criterion as an estimator of Kullback-Leibler entropy. In particular, we present the proper way of ranking the competing models based on Akaike weights (in Bayesian language - posterior probabilities of the models). Out of many particular models of dark energy we focus on four: quintessence, quintessence with time varying equation of state, brane-world and generalized Chaplygin gas model and test them on Riess' Gold sample. As a result we obtain that the best model - in terms of Akaike Criterion - is the quintessence model. The odds suggest that although there exist differences in the support given to specific scenarios by supernova data most of the models considered receive similar support. One can also notice that models similar in structure i.e. $\Lambda$CDM, quintessence and quintessence with variable equation of state are closer to each other in terms of Kullback-Leibler entropy. Models having different structure i.e. Chaplygin gas or brane-world scenario are more distant (in Kullback-Leibler sense) from the best one.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Information-theoretic model selection applied to supernovae data does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Information-theoretic model selection applied to supernovae data, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Information-theoretic model selection applied to supernovae data will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-328320

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.