Spectral Methods for Time-Dependent Studies of Accretion Flows. II. Two-Dimensional Hydrodynamic Disks with Self-Gravity

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

13 pages, 9 figures. To appear in the ApJ. High resolution plots and animations of the simulations are available at http://w

Scientific paper

10.1086/500394

Spectral methods are well suited for solving hydrodynamic problems in which the self-gravity of the flow needs to be considered. Because Poisson's equation is linear, the numerical solution for the gravitational potential for each individual mode of the density can be pre-computed, thus reducing substantially the computational cost of the method. In this second paper, we describe two different approaches to computing the gravitational field of a two-dimensional flow with pseudo-spectral methods. For situations in which the density profile is independent of the third coordinate (i.e., an infinite cylinder), we use a standard Poisson solver in spectral space. On the other hand, for situations in which the density profile is a delta function along the third coordinate (i.e., an infinitesimally thin disk), or any other function known a priori, we perform a direct integration of Poisson's equation using a Green's functions approach. We devise a number of test problems to verify the implementations of these two methods. Finally, we use our method to study the stability of polytropic, self-gravitating disks. We find that, when the polytropic index Gamma is <= 4/3, Toomre's criterion correctly describes the stability of the disk. However, when Gamma > 4/3 and for large values of the polytropic constant K, the numerical solutions are always stable, even when the linear criterion predicts the contrary. We show that, in the latter case, the minimum wavelength of the unstable modes is larger than the extent of the unstable region and hence the local linear analysis is inapplicable.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Spectral Methods for Time-Dependent Studies of Accretion Flows. II. Two-Dimensional Hydrodynamic Disks with Self-Gravity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Spectral Methods for Time-Dependent Studies of Accretion Flows. II. Two-Dimensional Hydrodynamic Disks with Self-Gravity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spectral Methods for Time-Dependent Studies of Accretion Flows. II. Two-Dimensional Hydrodynamic Disks with Self-Gravity will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-298191

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.