Astronomy and Astrophysics – Astrophysics
Scientific paper
1996-11-12
Astron.Astrophys.Suppl.Ser.120:171-174,1996
Astronomy and Astrophysics
Astrophysics
4 pages LaTex file, 4 ps figures, to appear in Astron & Astrophys (Suppl)
Scientific paper
Spectral formation in steady state, spherical accretion onto neutron stars and black holes is examined by solving numerically and analytically the equation of radiative transfer. The photons escape diffusively and their energy gains come from their scattering off thermal electrons in the converging flow of the accreting gas. We show that the bulk motion of the flow is more efficient in upscattering photons than thermal Comptonization in the range of non-relativistic electron temperatures. The spectrum observed at infinity is a power law with an exponential turnover at energies of order the electron rest mass. Especially in the case of accretion into a black hole, the spectral energy power-law index is distributed around 1.5. Because bulk motion near the horizon (1-5 Schwarzschild radii) is most likely a necessary characteristic of accretion into a black hole, we claim that observations of an extended power law up to about the electron rest mass, formed as a result of bulk motion Comptonization, is a real observational evidence for the existence of an underlying black hole.
Kylafis Nick D.
Mastichiadis Apostolos
Titarchuk Lev
No associations
LandOfFree
Spherical accretion onto neutron stars and black holes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Spherical accretion onto neutron stars and black holes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spherical accretion onto neutron stars and black holes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-295691