The Far-Ultraviolet "Continuum" in Protoplanetary Disk Systems I: Electron-Impact H2 and Accretion Shocks

Astronomy and Astrophysics – Astrophysics – Earth and Planetary Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

14 pages, 8 figures, 3 tables. ApJ, accepted

Scientific paper

We present deep spectroscopic observations of the classical T Tauri stars DF Tau and V4046 Sgr in order to better characterize two important sources of far-ultraviolet continuum emission in protoplanetary disks. These new Hubble Space Telescope-Cosmic Origins Spectrograph observations reveal a combination of line and continuum emission from collisionally excited H2 and emission from accretion shocks. H2 is the dominant emission in the 1400-1650 A band spectrum of V4046 Sgr, while an accretion continuum contributes strongly across the far-ultraviolet spectrum of DF Tau. We compare the spectrum of V4046 Sgr to models of electron-impact induced H2 emission to constrain the physical properties of the emitting region, after making corrections for attenuation within the disk. We find reasonable agreement with the broad spectral characteristics of the H2 model, implying N(H2) ~ 10^{18} cm^{-2}, T(H2) = 3000^{+1000}_{-500} K, and a characteristic electron energy in the range of ~ 50 - 100 eV. We propose that self-absorption and hydrocarbons provide the dominant attenuation for H2 line photons originating within the disk. For both DF Tau and V4046 Sgr, we find that a linear fit to the far-UV data can reproduce near-UV/optical accretion spectra. We discuss outstanding issues concerning how these processes operate in protostellar/protoplanetary disks, including the effective temperature and absolute strength of the radiation field in low-mass protoplanetary environments. We find that the 912-2000A continuum in low-mass systems has an effective temperature of ~10^{4} K with fluxes 10^{5-7} times the interstellar level at 1 AU.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Far-Ultraviolet "Continuum" in Protoplanetary Disk Systems I: Electron-Impact H2 and Accretion Shocks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Far-Ultraviolet "Continuum" in Protoplanetary Disk Systems I: Electron-Impact H2 and Accretion Shocks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Far-Ultraviolet "Continuum" in Protoplanetary Disk Systems I: Electron-Impact H2 and Accretion Shocks will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-295066

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.