The Lee-Yang and Pólya-Schur Programs. II. Theory of Stable Polynomials and Applications

Mathematics – Complex Variables

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

32 pages

Scientific paper

10.1002/cpa.20295

In the first part of this series we characterized all linear operators on spaces of multivariate polynomials preserving the property of being non-vanishing in products of open circular domains. For such sets this completes the multivariate generalization of the classification program initiated by P\'olya-Schur for univariate real polynomials. We build on these classification theorems to develop here a theory of multivariate stable polynomials. Applications and examples show that this theory provides a natural framework for dealing in a uniform way with Lee-Yang type problems in statistical mechanics, combinatorics, and geometric function theory in one or several variables. In particular, we answer a question of Hinkkanen on multivariate apolarity.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Lee-Yang and Pólya-Schur Programs. II. Theory of Stable Polynomials and Applications does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Lee-Yang and Pólya-Schur Programs. II. Theory of Stable Polynomials and Applications, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Lee-Yang and Pólya-Schur Programs. II. Theory of Stable Polynomials and Applications will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-280955

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.