Astronomy and Astrophysics – Astrophysics
Scientific paper
2002-03-23
Phys.Rev. E60 (1999) 3920
Astronomy and Astrophysics
Astrophysics
19 pages, 15 figures, Revtex4
Scientific paper
10.1103/PhysRevE.60.3920
The Melnikov method is applied to periodically perturbed open systems modeled by an inverse--square--law attraction center plus a quadrupolelike term. A compactification approach that regularizes periodic orbits at infinity is introduced. The (modified) Smale-Birkhoff homoclinic theorem is used to study transversal homoclinic intersections. A larger class of open systems with degenerated (nonhyperbolic) unstable periodic orbits after regularization is also briefly considered.
Letelier Patricio S.
Motter Adilson E.
No associations
LandOfFree
Homoclinic crossing in open systems: Chaos in periodically perturbed monopole plus quadrupolelike potentials does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Homoclinic crossing in open systems: Chaos in periodically perturbed monopole plus quadrupolelike potentials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Homoclinic crossing in open systems: Chaos in periodically perturbed monopole plus quadrupolelike potentials will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-264593