Modeling the dynamical evolution of the M87 globular cluster system

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

15 pages,14 figures;accepted for publication in The Astrophysical Journal

Scientific paper

10.1086/376688

We study the dynamical evolution of the M87 globular cluster system (GCS) with a number of numerical simulations. We explore a range of different initial conditions for the GCS mass function (GCMF), for the GCS spatial distribution and for the GCS velocity distribution. We confirm that an initial power-law GCMF like that observed in young cluster systems can be readily transformed through dynamical processes into a bell-shaped GCMF. However,only models with initial velocity distributions characterized by a strong radial anisotropy increasing with the galactocentric distance are able to reproduce the observed constancy of the GCMF at all radii.We show that such strongly radial orbital distributions are inconsistent with the observed kinematics of the M87 GCS. The evolution of models with a bell-shaped GCMF with a turnover similar to that currently observed in old GCS is also investigated. We show that models with this initial GCMF can satisfy all the observational constraints currently available on the GCS spatial distribution,the GCS velocity distribution and on the GCMF properties.In particular these models successfully reproduce both the lack of a radial gradient of the GCS mean mass recently found in an analysis of HST images of M87 at multiple locations, and the observed kinematics of the M87 GCS.Our simulations also show that evolutionary processes significantly affect the initial GCS properties by leading to the disruption of many clusters and changing the masses of those which survive.The preferential disruption of inner clusters flattens the initial GCS number density profile and it can explain the rising specific frequency with radius; we show that the inner flattening observed in the M87 GCS spatial distribution can be the result of the effects of dynamical evolution on an initially steep density profile. (abridged)

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Modeling the dynamical evolution of the M87 globular cluster system does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Modeling the dynamical evolution of the M87 globular cluster system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modeling the dynamical evolution of the M87 globular cluster system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-262791

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.