Star formation rate in galaxies from UV, IR, and H-alpha estimators

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

21 pages, 9 figures, accepted for publication in A&A

Scientific paper

10.1051/0004-6361:20031144

Infrared (IR) luminosity of galaxies originating from dust emission can be used as an indicator of the star formation rate (SFR). Inoue et al. (2000, IHK) have derived a formula for the conversion from IR luminosity to SFR by using the following three quantities: the fraction of Lyman continuum luminosity absorbed by gas (f), the fraction of UV luminosity absorbed by dust (epsilon), and the fraction of dust heating from old (>10^8 yr) stellar populations (eta). We develop a method to estimate those three quantities based on the idea that the various way of SFR estimates should return the same SFR. After applying our method to samples of galaxies, the following results are obtained. First, our method is applied to star-forming galaxies, finding that f~0.6, epsilon~0.5, and eta~0.4 as representative values. Next, we apply the method to a starburst sample, which shows larger extinction than the star-forming galaxy sample. With the aid of f, epsilon, and eta, we estimate reliable SFRs. Moreover, the H-alpha luminosity, if the H-alpha extinction is corrected by using the Balmer decrement, is suitable for a statistical analysis of SFR, because the same correction factor for the Lyman continuum extinction is applicable to both normal and starburst galaxies over all the range of SFR. The metallicity dependence of f and epsilon is also tested: Only the latter proves to have a correlation with metallicity. As an extension of our result, we show that all UV, H-alpha, and IR comoving luminosity densities at z=0 give a consistent SFR (~ 3x10^{-2}h M_sun/Mpc^3). Useful formulae for SFR estimate are listed.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Star formation rate in galaxies from UV, IR, and H-alpha estimators does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Star formation rate in galaxies from UV, IR, and H-alpha estimators, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Star formation rate in galaxies from UV, IR, and H-alpha estimators will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-258236

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.