Multiple conjugacy problem in graphs of free abelian groups

Mathematics – Group Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

22 pages

Scientific paper

A group G is a vGBS group if it admits a decomposition as a finite graph of groups with all edge and vertex groups finitely generated and free abelian. We prove that the multiple conjugacy problem is solvable between two n-tuples A and B of elements of G whenever the elements of A does not generate an elliptic subgroup. When the edge and vertex groups are infinite cyclic, i.e. G is a Generalized Baumslag-Solitar group, we prove that the multiple conjugacy problem is fully solvable.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Multiple conjugacy problem in graphs of free abelian groups does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Multiple conjugacy problem in graphs of free abelian groups, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiple conjugacy problem in graphs of free abelian groups will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-256420

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.