Gravitational Quenching by Clumpy Accretion in Cool Core Clusters: Convective Dynamical Response to Overheating

Astronomy and Astrophysics – Astrophysics – Cosmology and Extragalactic Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

16 pages, 7 figures, accepted by MNRAS

Scientific paper

Many galaxy clusters pose a "cooling-flow problem", where the observed X-ray emission from their cores is not accompanied by enough cold gas or star formation. A continuous energy source is required to balance the cooling rate over the whole core volume. We address the feasibility of a gravitational heating mechanism, utilizing the gravitational energy released by the gas that streams into the potential well of the cluster dark-matter halo. We focus here on a specific form of gravitational heating in which the energy is transferred to the medium thorough the drag exerted on inflowing gas clumps. Using spheri-symmetric hydro simulations with a subgrid representation of these clumps, we confirm our earlier estimates that in haloes >=10^13 solar masses the gravitational heating is more efficient than the cooling everywhere. The worry was that this could overheat the core and generate an instability that might push it away from equilibrium. However, we find that the overheating does not change the global halo properties, and that convection can stabilize the cluster by carrying energy away from the overheated core. In a typical rich cluster of 10^{14-15}solar masses, with ~5% of the accreted baryons in gas clumps of ~10^8 solar masses, we derive upper and lower limits for the temperature and entropy profiles and show that they are consistent with those observed in cool-core clusters. We predict the density and mass of cold gas and the level of turbulence driven by the clump accretion. We conclude that gravitational heating is a feasible mechanism for preventing cooling flows in clusters.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Gravitational Quenching by Clumpy Accretion in Cool Core Clusters: Convective Dynamical Response to Overheating does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Gravitational Quenching by Clumpy Accretion in Cool Core Clusters: Convective Dynamical Response to Overheating, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gravitational Quenching by Clumpy Accretion in Cool Core Clusters: Convective Dynamical Response to Overheating will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-229930

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.