Periodicities in Linear Fractional Recurrences: Degree growth of birational surface maps

Mathematics – Dynamical Systems

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

We consider the set of all 2-step recurrences (difference equations) that are
given by linear fractional maps. These give birational maps of the plane. We
determine the degree growth of these birational maps. We find the all the maps
in this family that are periodic. This also leads to new surface automorphisms
with positive entropy.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Periodicities in Linear Fractional Recurrences: Degree growth of birational surface maps does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Periodicities in Linear Fractional Recurrences: Degree growth of birational surface maps, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Periodicities in Linear Fractional Recurrences: Degree growth of birational surface maps will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-224817

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.