- LandOfFree
- Scientists
- Astronomy and Astrophysics
- Astrophysics
- High Energy Astrophysical Phenomena
Details
The pulse profile and spin evolution of the accreting pulsar in Terzan
5, IGR J17480-2446, during its 2010 outburst
The pulse profile and spin evolution of the accreting pulsar in Terzan
5, IGR J17480-2446, during its 2010 outburst
2012-03-19
-
arxiv.org/abs/1203.4096v1
Astronomy and Astrophysics
Astrophysics
High Energy Astrophysical Phenomena
To appear in MNRAS
Scientific paper
(abridged) We analyse the spectral and pulse properties of the 11 Hz transient accreting pulsar, IGR J17480-2446, in the globular cluster Terzan 5, considering all the available RXTE, Swift and INTEGRAL observations performed between October and November, 2010. By measuring the pulse phase evolution we conclude that the NS spun up at an average rate of =1.48(2)E-12 Hz/s, compatible with the accretion of the Keplerian angular momentum of matter at the inner disc boundary. Similar to other accreting pulsars, the stability of the pulse phases determined by using the second harmonic component is higher than that of the phases based on the fundamental frequency. Under the assumption that the second harmonic is a good tracer of the neutron star spin frequency, we successfully model its evolution in terms of a luminosity dependent accretion torque. If the NS accretes the specific Keplerian angular momentum of the in-flowing matter, we estimate the inner disc radius to lie between 47 and 93 km when the luminosity attains its peak value. Smaller values are obtained if the interaction between the magnetic field lines and the plasma in the disc is considered. The phase-averaged spectrum is described by thermal Comptonization of photons with energy of ~1 keV. A hard to soft state transition is observed during the outburst rise. The Comptonized spectrum evolves from a Comptonizing cloud at an electron temperature of ~20 keV towards an optically denser cloud at kT_e~3 keV. At the same time, the pulse amplitude decreases from 27% to few per cent and becomes strongly energy dependent. We discuss various possibilities to explain such a behaviour, proposing that at large accretion luminosities a significant fraction of the in-falling matter is not channelled towards the magnetic poles, but rather accretes more evenly onto the NS surface.
Affiliated with
Also associated with
No associations
LandOfFree
Say what you really think
Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.
Rating
The pulse profile and spin evolution of the accreting pulsar in Terzan
5, IGR J17480-2446, during its 2010 outburst does not yet have a rating.
At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The pulse profile and spin evolution of the accreting pulsar in Terzan
5, IGR J17480-2446, during its 2010 outburst, we encourage you to share that experience with our LandOfFree.com community.
Your opinion is very important and The pulse profile and spin evolution of the accreting pulsar in Terzan
5, IGR J17480-2446, during its 2010 outburst will most certainly appreciate the feedback.
Rate now
Profile ID: LFWR-SCP-O-212524
All data on this website is collected from public sources.
Our data reflects the most accurate information available at the time of publication.