Mathematics – Functional Analysis
Scientific paper
1992-07-21
Mathematics
Functional Analysis
Scientific paper
In this paper we show that every sequence (F_n) of finite dimensional subspaces of a real or complex Banach space with increasing dimensions can be ``refined'' to yield an F.D.D. (G_n), still having increasing dimensions, so that either every bounded sequence (x_n), with x_n in G_n for n in N, is weakly null, or every normalized sequence (x_n), with x_n in G_n for n in N, is equivalent to the unit vector basis of l_1. Crucial to the proof are two stabilization results concerning Lipschitz functions on finite dimensional normed spaces. These results also lead to other applications. We show, for example, that every infinite dimensional Banach space X contains an F.D.D. (F_n), with lim_{n to infty} dim (F_n)=infty, so that all normalized sequences (x_n), with x_n in F_n, n in N, have the same spreading model over X. This spreading model must necessarily be 1-unconditional over X.
Odell Edward
Rosenthal Haskell P.
Schlumprecht Thomas
No associations
LandOfFree
On Weakly Null FDD's in Banach Spaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On Weakly Null FDD's in Banach Spaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On Weakly Null FDD's in Banach Spaces will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-197810