ESA's XMM-Newton gains deep insights into the distant Universe

Statistics – Computation

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

First image from the XMM-LSS survey hi-res
Size hi-res: 87 kb Credits: ESA
First image from the XMM-LSS survey The first image from the XMM-LSS survey is actually a combination of fourteen separate 'pointings' of the space observatory. It represents a region of the sky eight times larger than the full Moon and contains around 25 clusters. The circles represent the sources previously known from the 1991 ROSAT All-Sky Survey.
A computer programme zooms in on an interesting region hi-res
Size hi-res: 86 kb Credits: ESA
A computer programme zooms in on an interesting region A computer programme zooms in on an interesting region of the image and identifies the possible cluster. Each point on this graph represents a single X-ray photons detected by XMM-Newton. Most come from distant actie galaxies and the computer must perform a sophisticated, statistical computation to determine which X-ray come from clusters.
Contour map of clusters hi-res
Size hi-res: 139 kb Credits: ESA
Contour map of clusters The computer programme transforms the XMM-Newton data into a contour map of the cluster's probable extent and superimposes it over the CFHT snapshot, allowing the individual galaxies in the cluster to be targeted for further observations with ESO's VLT, to measure its distance and locate the cluster in the universe.
Unlike grains of sand on a beach, matter is not uniformly spread throughout the Universe. Instead, it is concentrated into galaxies like our own which themselves congregate into clusters. These clusters are 'strung' throughout the Universe in a web-like structure. Astronomers have studied this large-scale structure of the nearby Universe but have lacked the instruments to extend the search to the large volumes of the distant Universe.
Thanks to its unrivalled sensitivity, in less than three hours, ESA's X-ray observatory XMM-Newton can see back about 7000 million years to a cosmological era when the Universe was about half its present size, and clusters of galaxies more tightly packed. Marguerite Pierre, CEA Saclay, France, with a European and Chilean team, used this ability to search for remote clusters of galaxies and map out their distribution.
The work heralds a new era of studying the distant Universe. The optical identification of clusters shows only the galaxies themselves. However, X-rays show the gas in between the galaxies - which is where most of the matter in a cluster resides. This is like going from seeing a city at night, where you only see the lighted windows, to seeing it during the daytime, when you finally get to see the buildings themselves.
Tracking down the clusters is a painstaking, multi-step process. In tandem with XMM-Newton, the team uses the four-metre Canada-France-Hawaii Telescope (CFHT), on Mauna Kea, Hawaii, to take an optical snapshot of the same region of space. A tailor-made computer programme combs the XMM-Newton data looking for concentrations of X-rays that suggest large, extended structures. These are the clusters and they represent only about 10% of the detected X-ray sources (the others are mostly distant active galaxies).
When the program finds a cluster, it zooms in on that region and converts the XMM-Newton data into a contour map of X-ray intensity, which it then superimposes on the CFHT optical image. The astronomers use this to check if anything is visible within the X-ray emission. If it is, the work then shifts to one of the world's largest telescopes, the European Southern Observatory (ESO) Very Large Telescope where the astronomers identify the individual galaxies in the cluster and take 'redshift' measurements. These give a measurement of the cluster's distance.
In this way, Pierre and colleagues are mapping the distribution of galaxy clusters of the distant Universe, for the first time in astronomy.
"Galaxy clusters are the largest concentrations of matter in the Universe and XMM-Newton is extremely efficient at finding them," says Pierre.
Although the task is still a work in progress, first results seem to confirm that the number of clusters 7000 million years ago is little different from that of today. This behaviour is predicted by models of the Universe that expand forever and drive the galaxy clusters further and further apart.
Eventually, it will be possible for the team to use their results to determine whether the expansion of the Universe is accelerating, as indicated by some other recent observations, or decelerating, as traditionally thought.
Note to Editors:
This is a coordinated ESA/ESO release. The presented results have been obtained by the XMM-LSS consortium, led by Service d'Astrophysique du CEA (France) and consisting of Co-I institutes from the United Kingdom, Ireland, Denmark, The Netherlands, Belgium, France, Italy, Germany, Spain and Chile. The home page of the XMM-LSS project can be found at: http://vela.astro.ulg.ac.be/themes/spatial/xmm/LSS/index_e.html
This work is based on two papers to be published in the professional astronomy journal, Astronomy and Astrophysics (The XMM-LSS survey:I. Scientific motivations, design and first results by Marguerite Pierre et al., astro-ph/0305191 and The XMM-LSS survey:II. First high redshift galaxy clusters: relaxed and collapsing systems by Ivan Valtchanov et al.,astro-ph/0305192).
More about XMM-Newton
XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket from French Guiana. It is expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects.

No affiliations

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

ESA's XMM-Newton gains deep insights into the distant Universe does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with ESA's XMM-Newton gains deep insights into the distant Universe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and ESA's XMM-Newton gains deep insights into the distant Universe will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1885734

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.