Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

27

Scientific paper

Earth, Jupiter's moon Io and Saturn's tiny moon Enceladus are the only solid objects in the Solar System to be sufficiently geologically active for their internal heat to be detected by remote sensing. Interestingly, the endogenic activity on Enceladus is only located on a specific region at the south pole, from which jets of water vapor and ice particles have been observed [Spencer, J.R., and 9 colleagues, 2006. Science 311, 1401 1405; Porco, C.C., and 24 colleagues, 2006. Science 311, 1393 1401]. The current polar location of the thermal anomaly can possibly be explained by diapir-induced reorientation of the satellite [Nimmo, F., Pappalardo, R.T., 2006. Nature 441, 614 616], but the thermal anomaly triggering and the heat power required to sustain it over geological timescales remain problematic. Using a three-dimensional viscoelastic numerical model simulating the response of Enceladus to tidal forcing, we explore the effect of a low-viscosity anomaly in the ice shell, localized to the south polar region, on the tidal dissipation patterns. We demonstrate that only interior models with a liquid water layer at depth can explain the observed magnitude of dissipation rate and its particular location at the south pole. Moreover, we show that tidally-induced heat must be generated over a relatively broad region in the southern hemisphere, and it is then transferred toward the south pole where it is episodically released during relatively short resurfacing events. As large tidal dissipation and internal melting cannot be induced in the south polar region in the absence of a pre-existing liquid decoupling layer, we propose that liquid water must have been present in the interior for a very long period of time, and possibly since the satellite formation. Owing to the orbital equilibrium requirement [Meyer, J., Wisdom, J., 2007. Icarus 188, 535 539], sustaining some liquid water at depth is impossible if heat is continuously emitted at a rate of 4 8 GW at the south pole. Based on that requirement, we propose that the current thermal emission is not in equilibrium with the heat production, and that the thermal emission rate is abnormally high at present time. Alternatively, continuous dissipation at a rate of 1 2 GW in the ice shell at the south pole should be sufficient to induce internal melting and it could sustain a layer of liquid water at depth over geologic timescales.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1861163

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.