Uncertainties for two-dimensional models of solar rotation from helioseismic eigenfrequency splitting

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4

Angular Velocity, Eigenvalues, Error Analysis, Helioseismology, Solar Interior, Solar Oscillations, Solar Rotation, Splitting, Stellar Models, Confidence, Data Reduction, P Waves, Parameterization, Solar Observatories, Spline Functions, Tensor Analysis

Scientific paper

Observed solar p-mode frequency splittings can be used to estimate angular velocity as a function of position in the solar interior. Formal uncertainties of such estimates depend on the method of estimation (e.g., least-squares), the distribution of errors in the observations, and the parameterization imposed on the angular velocity. We obtain lower bounds on the uncertainties that do not depend on the method of estimation; the bounds depend on an assumed parameterization, but the fact that they are lower bounds for the 'true' uncertainty does not. Ninety-five percent confidence intervals for estimates of the angular velocity from 1986 Big Bear Solar Observatory (BBSO) data, based on a 3659 element tensor-product cubic-spline parameterization, are everywhere wider than 120 nHz, and exceed 60,000 nHz near the core. When compared with estimates of the solar rotation, these bounds reveal that useful inferences based on pointwise estimates of the angular velocity using 1986 BBSO splitting data are not feasible over most of the Sun's volume. The discouraging size of the uncertainties is due principally to the fact that helioseismic measurements are insensitive to changes in the angular velocity at individual points, so estimates of point values based on splittings are extremely uncertain. Functionals that measure distributed 'smooth' properties are, in general, better constrained than estimates of the rotation at a point. For example, the uncertainties in estimated differences of average rotation between adjacent blocks of about 0.001 solar volumes across the base of the convective zone are much smaller, and one of several estimated differences we compute appears significant at the 95% level.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Uncertainties for two-dimensional models of solar rotation from helioseismic eigenfrequency splitting does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Uncertainties for two-dimensional models of solar rotation from helioseismic eigenfrequency splitting, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Uncertainties for two-dimensional models of solar rotation from helioseismic eigenfrequency splitting will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1828827

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.