Astronomy and Astrophysics – Astronomy
Scientific paper
Jan 1995
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1995apj...439..417g&link_type=abstract
Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 439, no. 1, p. 417-430
Astronomy and Astrophysics
Astronomy
23
Binary Stars, Infrared Astronomy, Infrared Imagery, Infrared Spectra, Radio Observation, Stellar Envelopes, Stellar Winds, Astronomical Photometry, Astronomical Polarimetry, Astronomical Spectroscopy, Flux Density, Image Analysis, Spectral Energy Distribution, Spectrum Analysis, Very Large Array (Vla)
Scientific paper
We report infrared (IR) imaging, IR photometry, IR spectroscopy, optical/IR photopolarimetry, and Very Large Array (VLA) radio observations of the peculiar binary star RY Scuti. These observations provide an unprecedented view of the detailed spatial structure of the equatorial mass-loss wind of a massive, luminous, 'overcontact' binary system. The binary star (0.43 AU separation) is surrounded by a flattened equatorial disk with an outer radius of approximately = 3 x 1016 cm (2000 AU) that emits strongly in the IR and radio. The inside of the disk is ionized and emits free-free radiation from hydrogen and 12.8 micrometers forbidden-line emission from (Ne II); the outside of the disk emits thermal radiation from silicate dust. Radio continuum emission is also produced in a compact H II region surrounding the binary. The dust may have a polycyclic aromatic hydrocarbon (PAH) component. We use a rudimentary geometric model in which the thermal IR and radio emission from the disk are assumed to arise in a pair of concentric toroidal rings to estimate the physical properties of the disk. The mean radius of the ionized gas toroid is approximately = 1.3 x 1016 cm (870 AU), and the mean radius of the dust toroid is approximately = 2.2 x 1016 cm (1470 AU). RY Scuti has a small intrinsic polarization, with the electric vector perpendicular to the equatorial disk, that is probably caused by electron scattering from hot gas close to the central binary. We conclude that neon in the nebula is overabundant with respect to hydrogen and helium by a factor of between 1.6 and 10. Our IR/radio image data suggest that the circumstellar disk is part of an extensive radiation driven mass-loss outflow that is strongly confined to the equatorial plane of the binary system. The sharp spatial separation of the outer dust torus from the inner ionized gas torus confirms earlier suggestions that dust formation in the circumstellar ejecta of very hot stars must occur in regions that are shielded from the hard radiation field.
Forrest William John
Gehrz Robert D.
Hayward Thomas L.
Hjellming Robert M.
Houck James R.
No associations
LandOfFree
RY Scuti: Infrared and radio observations of the mass-loss wind of a massive binary star system does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with RY Scuti: Infrared and radio observations of the mass-loss wind of a massive binary star system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and RY Scuti: Infrared and radio observations of the mass-loss wind of a massive binary star system will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1819535