Mathematics – Algebraic Geometry
Scientific paper
2007-06-11
Mathematics
Algebraic Geometry
13 pages and 2 figures
Scientific paper
We show that the Galois group $Gal(\bar{\Q} /\Q)$ operates faithfully on the set of connected components of the moduli spaces of surfaces of general type, and also that for each element $\sigma \in Gal(\bar{\Q} /\Q)$ different from the identity and from complex conjugation, there is a surface of general type such that $X$ and the Galois conjugate variety $X^{\sigma}$ have nonisomorphic fundamental groups. The result was announced by the second author at the Alghero Conference 'Topology of algebraic varieties' in september 2006. Before the present paper was actually written, we received a very interesting preprint by Robert Easton and Ravi Vakil (\cite{e-v}), where it is proven, with a completely different type of examples, that the Galois group $Gal(\bar{\Q} /\Q)$ operates faithfully on the set of irreducible components of the moduli spaces of surfaces of general type. We also give other simpler examples of surfaces with nonisomorphic fundamental groups which are Galois conjugate, hence have isomorphic algebraic fundamental groups.
Bauer Ingrid
Catanese Fabrizio
Grunewald Fritz
No associations
LandOfFree
The absolute Galois group acts faithfully on the connected components of the moduli space of surfaces of general type does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The absolute Galois group acts faithfully on the connected components of the moduli space of surfaces of general type, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The absolute Galois group acts faithfully on the connected components of the moduli space of surfaces of general type will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-179350