Astronomy and Astrophysics – Astrophysics
Scientific paper
Jul 2001
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2001a%26a...373..665k&link_type=abstract
Astronomy and Astrophysics, v.373, p.665-673 (2001)
Astronomy and Astrophysics
Astrophysics
Hydrodynamics, Methods: Analytical, Stars: Atmospheres, Supergiants, Stars: Mass-Loss
Scientific paper
The energy balance of the analytical solutions of Kakouris & Moussas (\cite{KM1997}) for a steady state of an externally heated/cooled 2-D circumstellar envelope is investigated. It is found that the required heating/cooling rates are physically realistic and can be related to specific microscopic mechanisms. We find that in the subsonic region of the wind the fluid is mechanically heated. In the supersonic stellar envelope the fluid is cooled at a rate which is consistent with radiative cooling to space. The energy balance of steady shell or blob formation in the envelopes of luminous early or late type supergiants is also investigated (Kakouris & Moussas \cite{KM1998}). We find that radiative cooling occurs in the intermediate deceleration region of the three-zone envelope. Indicative of the local thermodynamic processes is the effective polytropic index alpha which takes values close to the star between 1 and 4, becoming =~ 2 at larger distances. The heated subsonic region close to the stellar surface is isothermal and becomes adiabatic at the sonic transition. We find that the polytropic index alpha is less than unity in the vicinity of the dense blob, indicating that the region may be dominated by convection.
No associations
LandOfFree
On steady shell formation in stellar atmospheres. II. Energy balance in a non-polytropic stellar envelope does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On steady shell formation in stellar atmospheres. II. Energy balance in a non-polytropic stellar envelope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On steady shell formation in stellar atmospheres. II. Energy balance in a non-polytropic stellar envelope will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1773001