The Role of Spinel Minerals in Lunar Magma Evolution

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

[5410] Planetary Sciences: Solid Surface Planets / Composition, [5464] Planetary Sciences: Solid Surface Planets / Remote Sensing, [5470] Planetary Sciences: Solid Surface Planets / Surface Materials And Properties, [6250] Planetary Sciences: Solar System Objects / Moon

Scientific paper

The Moon Mineralogy Mapper (M3), a NASA guest instrument on Chandrayaan-1, India’s first mission to the Moon, was designed to map the surface mineralogy of the Moon using reflected solar radiation at visible and near-infrared wavelengths, which contain highly diagnostic absorptions due to minerals. The M3 spectrometer has discovered several new and unexpected aspects of the geology and petrology of the Moon, some involving specific oxide phases. Spinel minerals, with the general formula, AB2O4, present clues as to the oxygen fugacity, the nature of magmatic systems, and their evolution, particularly during the early stages of crystallization. On the Moon, with its total lack of Fe3+ and minerals such as magnetite, observed spinels range between spinel, MgAl2O4; hercynite, FeAl2O4; Chromite, FeCr2O4; and ulvöspinel, Fe(FeTi)2O4. They manifest themselves in three distinctly different igneous rock types: highlands rocks of anorthosites/troctolites, gabbro-norites; mare basalts with various TiO2 contents; and basaltic pyroclastic volcanic glasses. Although spinels occur as minor minerals in the Apollo collection, unique rock types dominated by Mg-spinel (with olivine and pyroxene abundances below detection limits, assumed to be ~5%) have been identified by M3 on the Moon. Because the spinel-bearing rocks detected by M3 have no signature of a significant olivine component, they must be dominated by plagioclase and spinel. Pink Mg-spinels typically occur as a minor phase in troctolites (plagioclase + olivine), a highland rock formed after the initial Ferroan Anorthosite (FAN) crust, presumably by serial magmatism deep within the crust, with intrusion upward. FANs were formed by floatation of plagioclase in the lunar magma ocean (LMO), whereas spinels would sink due to their much higher density. Thus, a plagioclase-rich rock type with a strong Mg-spinel spectral signature would have to be part of later highland intrusives. The excess Mg-spinel could be the product of crystal settling in an anorthositic magma chamber, much like in anorthositic layered intrusives on Earth. On the Moon, this would be a cumulate spinel anorthosite, never before seen in remote sensing or in the lunar sample collection. Virtually all types of mare basalt melts have chromite at or near the liquidus, closely associated with olivine or low-Ca pyroxene. During crystallization, the chromite becomes more Ti-rich, typically with nearly continuous solid-solution zonation outward to ulvöspinel. Pyroclastic orange/black glass on the Moon typically contains dendritic crystallites of ilmenite and olivine, a product of the rich-TiO2 content of the fire-fountain melt. However, other pyroclastic melt compositions, with high-Cr and low-Ti contents, have chromite on the liquidus, which could result in dendrites of chromite and olivine in the volcanic glass. Here again, M3 is seeing spinel-dominated materials, this time in close association with pyroclastic deposits.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Role of Spinel Minerals in Lunar Magma Evolution does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Role of Spinel Minerals in Lunar Magma Evolution, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Role of Spinel Minerals in Lunar Magma Evolution will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1771897

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.