Other
Scientific paper
May 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007shwav..16..359b&link_type=abstract
Shock Waves, Volume 16, Issue 4-5, pp. 359-389
Other
1
Scientific paper
Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method widely used for the modelling of a large variety of astrophysical fluid flows in more than one dimension. Simulations of thermonuclear explosions in stars require, besides the hydrodynamic equations, a realistic equation of state, an energy source term, and a set of nuclear kinetic equations to follow the composition changes of the gas during the explosion. The implementation of a realistic stellar equation of state, and the coupling of hydrodynamics and nuclear burning are investigated in the framework of the simple shock tube geometry. We present and discuss the results of a series of SPH simulations of a detonation in the presence of (1) a single exothermic nuclear reaction, and (2) a restricted network of nuclear reactions. Our results are compared to those of identical simulations performed by other authors using a different hydrodynamic method.
Busegnies Yves
François J.
Paulus Gerhard G.
No associations
LandOfFree
Unidimensional SPH simulations of reactive shock tubes in an astrophysical perspective does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Unidimensional SPH simulations of reactive shock tubes in an astrophysical perspective, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Unidimensional SPH simulations of reactive shock tubes in an astrophysical perspective will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1744550