Astronomy and Astrophysics – Astronomy
Scientific paper
Dec 1999
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1999geoji.139..763w&link_type=abstract
Geophysical Journal International, Volume 139, Issue 3, pp. 763-768.
Astronomy and Astrophysics
Astronomy
4
Bulk Modulus, Fluids In Rocks, Heat Flow, Oceanic Crust, Permeability, Tides
Scientific paper
Tidal loading causes fluid flow through permeable seafloor and between regions of contrasting elastic properties or porosity within subsea formations. We examine theoretically the dissipation of energy by these flows and its global significance as a mechanism for tidal energy dissipation. Expressions are given for energy dissipation rates in layered formations due to vertical flow caused by tidal loading, but the results can be used to constrain dissipation by other flow patterns. We consider flow near the seafloor, in gas-bearing sediments, and in highly fractured permeable igneous crust. Energy dissipation by the first two mechanisms is negligibly small globally, although it may be locally significant under extreme conditions. Under favourable conditions, flow in fractured crust may have greater energy dissipation, but the total amount is limited by the thickness of the permeable layer. Based on our current understanding of subsea hydrogeology, tidally induced flow in subsea formations appears to make little contribution to the observed global tidal energy dissipation.
Davis Earl E.
van der Kamp Garth
Wang Kelin
No associations
LandOfFree
Limits of tidal energy dissipation by fluid flow in subsea formations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Limits of tidal energy dissipation by fluid flow in subsea formations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Limits of tidal energy dissipation by fluid flow in subsea formations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1727464