In situ analysis of residues resulting from laboratory impacts into aluminum 1100 foil: Implications for Stardust crater analyses

Computer Science – Performance

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

8

Stardust Space Mission(S), Impact Crater, Residue, Silicates

Scientific paper

The encounter between the Stardust spacecraft and particles from comet 81P/Wild 2 gave impacts at a relative velocity of 6.1 km s-1 and near perpendicular incidence to the collector surface. Such conditions are well within the performance limits of light gas gun laboratory simulations. For this study, two series of shots were conducted at the University of Kent, firing magnesium silicates (Mg end-member forsterite, enstatite, diopside and lizardite), followed by a suite of increasingly Ferich olivines (through to Fe end-member fayalite) into Stardust flight-spare foils. Preserved residues were analysed using scanning electron microscopy combined with energy dispersive X-ray analyses (SEM/EDX). X-ray count integrals show that mineral compositions remain distinct from one another after impact, although they do show increased scatter. However, there is a small but systematic increase in Mg relative to Si for all residues when compared to projectile compositions. Whilst some changes in Mg:Si may be due to complex analytical geometries in craters, there appears to be some preferential loss of Si. In practice, EDX analyses in craters on Stardust Al 1100 foil inevitably include contributions from Fe- and Si-rich alloy inclusions, leading to further scattering of element ratios. Such inclusions have complicated Mg:Fe data interpretation. Compositional heterogeneity in the synthetic olivine projectiles also introduces data spread. Nevertheless, even with the preceding caveats, we find that the main groups of mafic silicates can be easily and reliably distinguished in EDX analyses performed in rapid surveys of foil craters, enabling access to a valuable additional collection of cometary materials.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

In situ analysis of residues resulting from laboratory impacts into aluminum 1100 foil: Implications for Stardust crater analyses does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with In situ analysis of residues resulting from laboratory impacts into aluminum 1100 foil: Implications for Stardust crater analyses, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and In situ analysis of residues resulting from laboratory impacts into aluminum 1100 foil: Implications for Stardust crater analyses will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1704682

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.