Digging for substellar objects in the stellar graveyard

Computer Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Substellar Objects, Stellar, White Dwarfs

Scientific paper

White dwarfs, the endpoint of stellar evolution for stars with mass < 8 [Special characters omitted.] , possess several attributes favorable for studying planet and brown dwarf formation around stars with primordial masses 1 [Special characters omitted.] . This thesis explores the consequences of post-main-sequence evolution on the dynamics of a planetary system and the observational signatures that arise from such evolution. These signatures are then specifically tested with a direct imaging survey of nearby white dwarfs. Finally, new techniques for high contrast imaging are discussed and placed in the context of further searches for planets and brown dwarfs in the stellar graveyard.
While planets closer than ~ 5 AU will most likely not survive the post-main sequence evolution of its parent star, any planet with semimajor axis > 5 AU will survive, and its semimajor axis will increase as the central star loses mass. The stability of adjacent orbits to mutual planet-planet perturbations depends on the ratio of the planet mass to the central star's mass, and I demonstrate that some planets in previously stable orbits around a star undergoing mass loss will become unstable.
If pollution of a white dwarf's atmosphere is caused by relic planetary systems, any white dwarf with photospheric absorption due to metals can be searched for substellar companions. Hydrogen white dwarfs with metal absorption, so called DAZ white dwarfs, are hard to explain by simple ISM accretion, and present an opportunity to test the observational signatures of unstable planetary systems. Additionally, field white dwarfs can be searched for substellar companions as well.
The search for planetary companions to stars requires further development of high contrast imaging techniques. This thesis studies Gaussian aperture pupil masks (GAPMs) which in theory can achieve the contrast requisite for directly imaging an extrasolar planet around a nearby solar type star. I outline the process of designing, fabricating, and testing a GAPM for use on current telescopes and specifically the Penn State near-IR Imager and Spectrograph (PIRIS) at the Mt. Wilson 100" telescope. I find that observations with a prototype are quite successful, achieving a contrast similar to a traditional Lyot coronagraph without blocking any light from a central object and useful for finding faint companions to nearby young solar analogues. In the lab I can reproduce the expected PSF reasonably well and with a single aperture design which achieves ~ 4 x 10 -5 contrast at 10l/ D . I find that small inaccuracies in the mask fabrication process and insufficient correction of the atmosphere contribute the most degradation to contrast at these levels. (Abstract shortened by UMI.)

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Digging for substellar objects in the stellar graveyard does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Digging for substellar objects in the stellar graveyard, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digging for substellar objects in the stellar graveyard will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1652389

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.