Mathematics – Classical Analysis and ODEs
Scientific paper
2010-10-26
Mathematics
Classical Analysis and ODEs
New dimension free estimates added; substantial length reduction
Scientific paper
In this paper, we extend classical methods from harmonic analysis to study smooth Fourier multipliers in the compact dual of arbitrary discrete groups. The main results are a H\"ormander-Mihlin multiplier theorem in finite dimensions, Littlewood-Paley inequalities on group von Neumann algebras and a dimension free Lp estimate for noncommutative Riesz transforms. As a byproduct of our approach, we provide new examples of Lp Fourier multipliers in Rn. The key novelty is to exploit cocycles and cross products in Fourier multiplier theory, in conjunction with quantum probability techniques and a noncommutative form of Calder\'on-Zygmund theory.
Junge Marius
Mei Tao
Parcet Javier
No associations
LandOfFree
Smooth Fourier multipliers on group von Neumann algebras does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Smooth Fourier multipliers on group von Neumann algebras, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Smooth Fourier multipliers on group von Neumann algebras will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-159150