Physics and Initial Data for Multiple Black Hole Spacetimes

Astronomy and Astrophysics – Astrophysics – General Relativity and Quantum Cosmology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

41 pages, 17 figures

Scientific paper

10.1103/PhysRevD.68.044019

An orbiting black hole binary will generate strong gravitational radiation signatures, making these binaries important candidates for detection in gravitational wave observatories. The gravitational radiation is characterized by the orbital parameters, including the frequency and separation at the inner-most stable circular orbit (ISCO). One approach to estimating these parameters relies on a sequence of initial data slices that attempt to capture the physics of the inspiral. Using calculations of the binding energy, several authors have estimated the ISCO parameters using initial data constructed with various algorithms. In this paper we examine this problem using conformally Kerr-Schild initial data. We present convergence results for our initial data solutions, and give data from numerical solutions of the constraint equations representing a range of physical configurations. In a first attempt to understand the physical content of the initial data, we find that the Newtonian binding energy is contained in the superposed Kerr-Schild background before the constraints are solved. We examine some deficiencies with the initial data approach to orbiting binaries, especially touching on the effects of prior motion and spin-orbital coupling of the angular momenta. Making rough estimates of these effects, we find that they are not insignificant compared to the binding energy, leaving some doubt of the utility of using initial data to predict ISCO parameters. In computations of specific initial-data configurations we find spin-specific effects that are consistent with analytical estimates.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Physics and Initial Data for Multiple Black Hole Spacetimes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Physics and Initial Data for Multiple Black Hole Spacetimes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Physics and Initial Data for Multiple Black Hole Spacetimes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-153907

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.