Distant World in Peril Discovered from La Silla

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

Giant Exoplanet Orbits Giant Star
Summary
When, in a distant future, the Sun begins to expand and evolves into a "giant" star, the surface temperature on the Earth will rise dramatically and our home planet will eventually be incinerated by that central body.
Fortunately for us, this dramatic event is several billion years away. However, that sad fate will befall another planet, just discovered in orbit about the giant star HD 47536, already within a few tens of millions of years. At a distance of nearly 400 light-years from us, it is the second-remotest planetary system discovered to date [1].
This is an interesting side-result of a major research project, now carried out by a European-Brazilian team of astronomers [2]. In the course of a three-year spectroscopic survey, they have observed about 80 giant stars in the southern sky with the advanced FEROS spectrograph on the 1.52-m telescope installed at the ESO La Silla Observatory (Chile). It is one of these stars that has just been found to host a giant planet. This is only the fourth such case known and with a diameter of about 33 million km (or 23.5 times that of our Sun), HD 47536 is by far the largest of those giant stars [1].
The distance of the planet from the star is still of the order of 300 million km (or twice the distance of the Earth from the Sun), a safe margin now, but this will not always be so. The orbital period is 712 days, i.e., somewhat less than two Earth years, and the planet's mass is 5 - 10 times that of Jupiter.
The presence of exoplanets in orbit around giant stars, some of which will eventually perish into their central star (be "cannibalized"), provides a possible explanation of the anomalous abundance of certain chemical elements that is observed in the atmospheres of some stars, cf. ESO PR 10/01.
This interesting discovery bodes well for coming observations of exoplanetary systems with new, more powerful instruments, like HARPS to be installed next year at the ESO 3.6-m telescope on La Silla, and also the Very Large Telescope Interferometer (VLTI) now being commissioned at Paranal.
PR Photo 05a/03: Giant stars observed in this programme (HR-diagram) PR Photo 05b/03: Giant star HD 47536. PR Photo 05c/03: "Velocity curve" of HD 47536. PR Photo 05d/03: Distance distribution of known exoplanets. Stellar evolution
The structure and evolution of stars like our Sun are quite well understood. They are born by contraction in immense clouds of dust and gas and when the central density and temperature become high enough, nuclear fusion ignites in their interiors. Then follows a long period of relative calm - the Sun is now in this phase - that ends when the nuclear fuel runs out. A direct result is that the star begins to expand and soon becomes a "giant". During this phase, the surface temperature drops somewhat (but is still several thousand degrees) and the colour of the star changes from yellow to red.
In the case of the Sun, this will happen some billion years from now. At some moment, our star will become larger and the surface of our home planet will become exceedingly hot, incinerating whatever remaining lifeforms that cannot protect themselves.
Later, the Sun will shred its outer layers into space and a small, hot core will become visible. This final stage of stellar evolution can be observed as beautiful "Planetary Nebulae", e.g. the Dumbbell Nebula of which an impressive VLT photo is available (ESO PR Photos 38a-b/98). A spectroscopic survey of giant stars
ESO PR Photo 05a/03
ESO PR Photo 05a/03
[Preview - JPEG: 400 x 467 pix - 128k [Normal - JPEG: 800 x 933 pix - 288k]
Caption: PR Photo 05a/03 shows part of the Hertzsprung-Russell (HR) diagram [3] - a very useful way to illustrate stellar evolution. Plotting the temperature of solar-type stars (abscissa; in degrees Kelvin or as a "colour index") against their intrinsic brightness (ordinate; in solar units) reveals a typical distribution (hotter stars are less bright than cooler stars) that reflect their different evolutionary stages. With time, the position of the Sun in this diagram (now at the lower left) will migrate towards the upper right as it expands and becomes brighter. This direction corresponds to increasing radius. The approximately 80 stars plotted here are those that are being spectroscopically observed within the present programme; cf. the text. The positions and names of four giant stars that are known to host planets are marked [1]. The largest and brightest of them is HD 47536, as indicated by its upper-right position, relative to the three others.
Since 1999, a European-Brazilian team of astronomers [2] has been studying a selection of comparatively bright giant stars with the goal to learn more about their physical properties. In particular, detailed spectra have been obtained by means of the advanced FEROS spectrograph on the 1.52-m telescope that is installed at the ESO La Silla Observatory in Chile, cf. ESO PR 03/99.
About 80 stars have been regularly observed with this instrument, in order to search for possible velocity variations [4]. In PR Photo 05a/03, their temperature and intrinsic brightness are plotted in the so-called Hertzsprung-Russell diagram [3], a very useful way of illustrating stellar evolution.
The background for this ambitious research project is that recent observations indicate that some giant stars may undergo small velocity variations with periods from days to years. While short-term variations are likely to be caused by oscillations in their extended and tenous atmospheres, there are at least three possible causes for long-term variations: 1) the gravitational pull of one or more orbiting planets, 2) radial pulsations of the entire star, or 3) variable surface patterns due to stellar activity.
Which of these possibilities are behind the observed velocity variations? How many of those stars pulsate? Do some of them possess planets and if so, are planetary systems around giant stars common or not?
"These are very fundamental questions" says team leader Johny Setiawan of the Kiepenheuer-Institut in Freiburg (Germany), "and the present discovery was somehow unexpected. Many of our giant stars show similar long-period velocity variations which we suspect are due to stellar activity". A planet around HD 47536
ESO PR Photo 05b/03
ESO PR Photo 05b/03
[Preview - JPEG: 400 x 462 pix - 68k [Normal - JPEG: 800 x 924 pix - 360k]
ESO PR Photo 05c/03
ESO PR Photo 05c/03
[Preview - JPEG: 400 x 433 pix - 112k [Normal - JPEG: 800 x 866 pix - 256k]
ESO PR Photo 05d/03
ESO PR Photo 05d/03
[Preview - JPEG: 477 x 400 pix - 96k [Normal - JPEG: 953 x 800 pix - 272k]
Captions: PR Photo 05b/03 shows a sky area of 10 x 10 arcmin2 around the 6th-magnitude giant star HD 47536 at which a new exoplanet has been found (reproduced from the Digital Sky Survey [STScI Digitized Sky Survey, (C) 1993, 1994, AURA, Inc. all rights reserved - cf. http://archive.eso.org/dss/dss]). The pattern is caused by internal reflections in the telescope from this relatively bright object. PR Photo 05c/03 displays the "velocity curve" of HD 47536, caused by the pull of the orbiting planet during the 712-day period (abscissa: Julian Date - 2,400,000; ordinate: velocity in kilometres per second along the line-of-sight). Error bars indicate the accuracy of the measurements. The fully-drawn curve is the computed velocity curve, corresponding to the best-fitting planetary orbit. The lower part of the diagram displays the deviation of the measurements from this curve - in the mean about 0.025 km/sec, or 25 m/sec. In PR Photo 05d/03, the distribution of the distances of the 100+ known exoplanets is shown, with the planet around HD 47536 at the extreme end.
The extensive observations began three years ago, with the main aim to pin down the cause(s) for any possible long-term variations. For this programme to succeed, it was also necessary to monitor other properties of these stars, in particular more rapid changes in the upper atmosphere ("stellar activity").
The first results indicate that about 70% of these stars display velocity variat

No affiliations

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Distant World in Peril Discovered from La Silla does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Distant World in Peril Discovered from La Silla, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Distant World in Peril Discovered from La Silla will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1526814

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.