Mathematics – Quantum Algebra
Scientific paper
2001-05-16
Mathematics
Quantum Algebra
Latex, 22p
Scientific paper
A quantum solvable algebra is an iterated $q$-skew extension of a commutative algebra. We get finite statification of prime spectrum for quantum solvable algebras obeying some natural conditions. We prove that for any prime ideal $I$ the skew field of fractions $Fract(R/I)$ is isomorphic to the skew field of fractions of an algebra of twisted polynomials (Quantum Gel'fand-Kirillov Conjecture).
No associations
LandOfFree
Stratification of prime spectrum of quantum solvable algebras does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Stratification of prime spectrum of quantum solvable algebras, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stratification of prime spectrum of quantum solvable algebras will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-150979