Biology
Scientific paper
Dec 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010agufmep43c0761h&link_type=abstract
American Geophysical Union, Fall Meeting 2010, abstract #EP43C-0761
Biology
[5200] Planetary Sciences: Astrobiology, [5419] Planetary Sciences: Solid Surface Planets / Hydrology And Fluvial Processes, [6225] Planetary Sciences: Solar System Objects / Mars
Scientific paper
The presence of valley networks across much of the ancient surface of Mars [e.g. 1] together with the locations and morphologies of the Martian deltas [e.g. 2] and ancient paleolakes [e.g. 3, 4], provides strong evidence that the Martian surface environment was once capable of sustaining long-lived flowing water. Many of the larger Martian valley networks exhibit characteristics consistent with their formation primarily from surface runoff of precipitated water [5-7]. Their formation likely followed similar processes as those that formed terrestrial river valleys, including the gradual erosion and transport of sediment downstream by bed load, suspended load, and wash load processes. When quantifying flow rates on Mars, some researchers have modified the Manning equation for depth- and width-averaged flow velocity in an attempt to better-fit Martian conditions [e.g. 3, 8-10]. These attempts, however, often result in flow velocities on Mars that are overestimated by up to a factor of two [10]. An alternative to the Manning equation that is often overlooked in the planetary science community is the Darcy-Weisbach (D-W) equation [11], which, unlike the Manning equation, maintains a dependence on the acceleration due to gravity. Although the D-W equation relies on a dimensionless friction function that has been fitted to terrestrial data, it is not a constant like the Manning coefficient. Rather, the D-W friction factor is a function of bed slope, flow depth, and median grain size [e.g. 8, 10, 12-14], and therefore it is better suited to model flow velocity on Mars. In this work, we investigate the formation timescales of the Martian valley networks through the use of four different sediment transport models [14], the D-W equation for average flow velocity, and a variety of parameters to encompass a range of possible formation conditions. This is done specific to each of eight large valley networks, all of which have crater densities that place their formation in the Late Noachian and Early Hesperian [15, 16], approximately 3.6 to 3.8 billion years ago. The preferred model scenario includes bankfull flows of 4-5 m depths corresponding to precipitation rates of 5 to 36 mm/day, depending on the valley network, and occurring intermittently 5% of the time. Results of the preferred model include formation timescales of 104 years (3°S, 5°E) to 108 years (east branch of Naktong Valles and 6°S, 45°E). References: [1] Hynek et al. (2010) JGR, doi:10.1029/2009JE003548; [2] Di Achille and Hynek (2010) Nature Geoscience, 3, 459-463; [3] Irwin et al. (2005) JGR, 110, E12S15; [4] Fassett and Head (2008) Icarus, 198, 37-56; [5] Craddock and Howard (2002) JGR, 107, 5111; [6] Howard et al. (2005) JGR, 110, E12S14; [7] Barnhart et al. (2009) JGR, 114, E01003; [8] Komar (1979) Icarus, 37, 156-181; [9] Goldspiel and Squyres (1991) Icarus, 89, 392-410; [10] Wilson et al. (2004) JGR, 109, E09003; [11] Leopold et al. (1964) Fluvial Processes in Geomorphology, 522pp; [12] Bathurst (1993) in Channel Network Hydrology, eds. Beven and Kirkby, p69-98; [13] Komar (1980) Icarus, 42, 317-329; [14] Kleinhans (2005) JGR, 110, E12003; [15] Fassett and Head (2008) Icarus, 195, 61-89; [16] Hoke and Hynek (2009) JGR, 114, E08002.
Hoke M. T.
Hynek Brian Michael
No associations
LandOfFree
Formation Timescales of the Martian Valley Networks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Formation Timescales of the Martian Valley Networks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Formation Timescales of the Martian Valley Networks will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1501248