Saturn Ring Observer Mission Concept: Closer Than We Thought

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

[5759] Planetary Sciences: Fluid Planets / Rings And Dust, [6265] Planetary Sciences: Solar System Objects / Planetary Rings

Scientific paper

The Saturn Ring Observer (SRO) mission concept would have a spacecraft hover directly over the rings, performing the first high-resolution studies of microphysical interactions between particles in Saturn's rings, at a scale of 1-10 centimeters. A new study suggests such a mission might be feasible sooner than previously thought. As part of the 2012 Planetary Science Decadal Survey (PSDS) deliberations, NASA-appointed teams conducted several dozen mission studies requested by PSDS Panels. A study requested by the PSDS Giant Planets Panel and performed in April 2010 addressed the SRO concept and technologies that could enable it. The Panel specified two study objectives: 1) Investigate the method(s) by which such a spacecraft might be placed in a tight circular orbit around Saturn, using chemical or nuclear-electric propulsion or aerocapture in Saturn’s atmosphere; and 2) Identify technological developments for the next decade that would enable such a mission in the post-2023 time frame (after the next saturnian equinox), with a particular focus on power and propulsion technologies. The “tight circular orbit” is a non-Keplerian orbit displaced 2-3 km perpendicular to the mean ring plane. A spacecraft in such an orbit would appear to “hover” over the ring particles orbiting Saturn directly “beneath” it, so this was dubbed the “hover orbit”. Operations technologies were found to be important drivers so they were examined also. Such a mission, with narrow-angle optical remote sensing instrumentation allowing resolution in the 1 to 10 cm range, would observe individual ring particles and their motions, and aggregate motions, measuring such fundamental quantities as relative velocities, spin states, and coefficients of restitution. A wider-angle instrument would observe aggregate behavior such as waves, self-gravity wakes, and ring edges. The study’s science team found that the kronocentric radial range covered during the mission is a useful metric for the relative science value of different mission options. Previous work on such missions focused on the difficulty of delivery from Saturn approach to “hover orbit initiation” (HOI), i.e. positioning the spacecraft to begin the hover orbit. Thus prior to the new study, SRO was considered a “far horizon” mission. This study identified new trajectories, based on the relatively new technique of “propulsive V-infinity leveraging”, that would be capable of delivering a spacecraft from Saturn approach to HOI with a delta-V budget of ~3.5 km/s, within the performance capability of a single standard chemical bipropellant stage. Power and propulsion technologies needed for the hover orbit were found to be much less challenging than NEP or aerocapture, potentially moving this concept’s horizon nearer in time, though significant issues involving spacecraft autonomous operations technologies (i.e. autonomous navigation and hazard avoidance) remain to be addressed. Other technologies such as Titan aerogravity assists would enhance the science return by providing a greater traversal range across the rings. This paper summarizes the new study’s results, including science options and performance curves for propulsion and power technology options.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Saturn Ring Observer Mission Concept: Closer Than We Thought does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Saturn Ring Observer Mission Concept: Closer Than We Thought, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Saturn Ring Observer Mission Concept: Closer Than We Thought will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1496056

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.