Mathematics – Algebraic Geometry
Scientific paper
2011-10-31
Mathematics
Algebraic Geometry
Scientific paper
Let A be a complex abelian variety and G its Mumford--Tate group. Supposing that the simple abelian subvarieties of A are pairwise non-isogenous, we find a lower bound for the rank of G, which is a little less than log_2 dim A. If we suppose further that End A is commutative, then we show that rk G >= log_2 g + 2, and this latter bound is sharp. We also obtain the same results for the rank of the l-adic monodromy group of an abelian variety defined over a number field. ----- Soit A une vari\'et\'e ab\'elienne complexe et G son groupe de Mumford--Tate. En admettant que les sous vari\'et\'es ab\'eliennes simples de A sont deux \`a deux non-isog\`enes, en trouve une minoration du rang de G, un peu moins que log_2 dim A. Si on suppose en plus que End A soit commutatif, alors on montre que rk G >= log_2 g + 2, et cette borne-ci est la meilleure possible. On obtient les m\^emes resultats pour le rang du groupe de monodromie l-adique d'une vari\'et\'e ab\'elienne d\'efinie sur un corps de nombres.
No associations
LandOfFree
Lower bounds for ranks of Mumford-Tate groups does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Lower bounds for ranks of Mumford-Tate groups, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lower bounds for ranks of Mumford-Tate groups will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-147944