Astronomy and Astrophysics – Astronomy
Scientific paper
Jun 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006rmxac..26q.165r&link_type=abstract
XI IAU Regional Latin American Meeting of Astronomy (Eds. L. Infante & M. Rubio) Revista Mexicana de Astronomía y Astrofísica (S
Astronomy and Astrophysics
Astronomy
Scientific paper
We present the hydrodynamical stucture of superwinds (SWs) driven by super star clusters (SSCs). We show the impact of the radiative cooling in the SW properties (Silich et al. 2003, ApJ, 590, 796; Silich et al. 2004, ApJ, 610, 226; Tenorio-Tagle et al. 2005, ApJ, 620, 217). The SSCs recently found by HST in a large variety of starburst galaxies present a typical radius and masses that range from to several times. These are now believed to be the unit of violent star formation in starburst galaxies. The mass and energy injected by stellar winds and SN explosions (in the SSC volume) is totally thermalized via random interactions. This generates the large central over pressure that continuously accelerates the ejected gas and eventually blows it out of the SSC volume. This outflow is called SW. An adiabatic steady wind solution was proposed by Chevalier & Clegg (1985, Nature, 317, 44). However, this solution is not applicable in the case of massive and concentrated cluster. The radiative cooling changes the temperature distribution, it makes that the temperature drops faster to in a very tiny radius than in the adiabatic case. For more energetic clusters, strong radiative cooling promotes the sudden leakage of thermal energy right within the star cluster volume itself, and for the cases in which the radiative losses exceed of stellar energy deposition rate, the cooling becomes catastrophic. For that case the stationary superwind solution is totally inhibited. We solved the hydrodynamics properties of the ejected gas driven by massive stars (via stellar winds and SN) in function of star formation lifetime, and found 3 important stages. And we show the observational signature for each super star cluster stages.
Rodriguez-Gonzalez Ary
Silich Sergiy
Tenorio-Tagle Guillermo
No associations
LandOfFree
On the Hydrodynamical Structure of Superwinds does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On the Hydrodynamical Structure of Superwinds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On the Hydrodynamical Structure of Superwinds will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1479324