Slowly balding black holes

Astronomy and Astrophysics – Astrophysics – High Energy Astrophysical Phenomena

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

14 pages, 2 figures

Scientific paper

The "no hair" theorem, a key result in General Relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the "no hair" theorem is not formally applicable for black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes $N_B = e \Phi_\infty /(\pi c \hbar)$, where $\Phi_\infty \approx 2 \pi^2 B_{NS} R_{NS}^3 /(P_{\rm NS} c)$ is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via three-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum "no-hair" theorem.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Slowly balding black holes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Slowly balding black holes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Slowly balding black holes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-147721

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.