Mathematics – Logic
Scientific paper
Sep 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008cqgra..25q9002.&link_type=abstract
Classical and Quantum Gravity, Volume 25, Issue 17, pp. 179002 (2008).
Mathematics
Logic
Scientific paper
The increasing prominence of general relativity in astrophysics and cosmology is reflected in the growing number of texts, particularly at the undergraduate level. A natural attitude before opening a new one is to ask i) what makes this different from those already published? And ii) does it follow the 'physics-first approach' as for instance the book by Hartle where the basic physical concepts are introduced first with as little formalism as possible, or does it follow the more traditional 'math-first approach' for which the mathematical formalism comes first and is then applied to phyics? As announced in the title, a distinctive feature of the book by Gron and Hervik is the space (almost half the book) devoted to cosmology and in particular to some of the most recent developments in this rapidly evolving field. It is also apparent that the authors have chosen, like the majority of current books on general relativity, the 'math-first approach'.
The book is divided into six parts, each of them subdivided into chapters with part VI containing a few short technical appendices. The first part of the book briefly presents in chapter I the principles of relativity, Newtonian mechanics and the Newtonian theory of gravity. In chapter II, a short introduction to special relativity is given. It seems at first surprising that the four-dimensional structure of space-time is not more fully exploited so that the reader would gain familiarity early on with notions like 4-velocity, 4-momentum and the stress energy tensor. This is in fact postponed to part II as an illustration of the mathematical formalism.
The second part is devoted to those elements of differential geometry needed in this kind of course. The authors' presentation is somewhat similar to that of the books by Misner, Thorne and Wheeler and by Straumann (2nd edition). Vectors and forms are treated separately and the formalism of differential forms is introduced in detail. The various kinds of differentiation on forms and on vectors (exterior covariant and Lie derivatives) are presented, and emphasis is given to the Cartan formalism as it is later systematically used to derive the curvature tensor and for solutions of the Einstein field equations. One also finds the properties of hypersurfaces, such as the intrinsic and extrinsic curvatures and the Gauss Codazzi relations. This makes this part of the book very useful and convenient since those important elements are gathered in one place. However the density of exposition in this part might appear a bit steep to a reader without some previous knowledge of differential geometry.
Part III deals with Einstein's field equations, and their applications to gravitational waves and black holes. The field equations are derived from a variational principle, the geometrical part (Einstein tensor) from the Einstein Hilbert action, and the matter part (stress energy tensor) from a generic action integral for matter. Various examples of stress energy tensors and in particular, for fluids, are considered, and several are used later in cosmology (for instance quintessence and Lorentz invariant vacuum energy). A short chapter on the linear approximation and gravitational waves then follows and it is good to see a section on gravito-electromagnetism. This part ends with a chapter devoted to black holes which is perhaps the weakest part of the book as it is quite sketchy. However this is to be expected in a book with an emphasis on cosmology, and such topics are extensively described in other books.
The rest of the book (parts IV and V) is essentially concerned with cosmology. The authors give a detailed description of the applications of the Einstein field equations to a universe with various matter contents, and present in a successful way the recent developments in this domain. The first chapter of part IV describes the standard homogeneous and isotropic cosmological model. It is followed by an interesting chapter dealing with universes composed of vacuum energy. There one finds, after the description of the Einstein static universe and the de Sitter solution, sections on inflation, on the Friedman Lemaître model and on models with quintessence and dark energy. This chapter ends with sections on cosmic density perturbations, temperature fluctations in the cosmic microwave background and on the history of our universe. With an additional chapter on anisotropic and homogeneous universes, part IV appears to be a very good and complete introduction to the basic and classical (i.e. non-quantum) elements of cosmology. In part V some advanced tools, such as Lie groups and the Lagrangian and Hamiltonian formalism are introduced and applied to cosmology. Also part V contains a chapter on the extrinsic curvature formalism for surface layers and its application to the recently introduced braneworld models. Finally it is a pleasant surprise to find an introduction to the Kaluza Klein theory as the last chapter of part V.
This book by Gron and Hervik certainly has its place in any good library. It covers most of the classical aspects of the theory of general relativity. The authors have made the effort to discuss many observational aspects and to illustrate the different chapters with many problems. One might regret that the authors' style is generally rather terse and not enough space is always reserved for explanation of physical concepts and for motivations of the theory (for instance, why curvature is so fundamental). This book would be most appropriate for graduate students and I will definitely recommend it as a reference textbook as well as a useful complement to other textbooks on general relativity.
No associations
LandOfFree
BOOK REVIEW: Einstein's General Theory of Relativity—with Modern Applications in Cosmology does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with BOOK REVIEW: Einstein's General Theory of Relativity—with Modern Applications in Cosmology, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and BOOK REVIEW: Einstein's General Theory of Relativity—with Modern Applications in Cosmology will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1435656