Astronomy and Astrophysics – Astronomy
Scientific paper
Oct 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010apj...721.1547r&link_type=abstract
The Astrophysical Journal, Volume 721, Issue 2, pp. 1547-1558 (2010).
Astronomy and Astrophysics
Astronomy
14
Magnetic Reconnection, Magnetohydrodynamics: Mhd, Sun: Coronal Mass Ejections: Cmes, Sun: Flares
Scientific paper
We investigate coronal energy flow during a simulated coronal mass ejection (CME). We model the CME in the context of the global corona using a 2.5D numerical MHD code in spherical coordinates that includes coronal heating, thermal conduction, and radiative cooling in the energy equation. The simulation domain extends from 1 to 20 Rs . To our knowledge, this is the first attempt to apply detailed energy diagnostics in a flare/CME simulation when these important terms are considered in the context of the MHD equations. We find that the energy conservation properties of the code are quite good, conserving energy to within 4% for the entire simulation (more than 6 days of real time). We examine the energy release in the current sheet as the eruption takes place, and find, as expected, that the Poynting flux is the dominant carrier of energy into the current sheet. However, there is a significant flow of energy out of the sides of the current sheet into the upstream region due to thermal conduction along field lines and viscous drag. This energy outflow is spatially partitioned into three separate components, namely, the energy flux flowing out the sides of the current sheet, the energy flowing out the lower tip of the current sheet, and the energy flowing out the upper tip of the current sheet. The energy flow through the lower tip of the current sheet is the energy available for heating of the flare loops. We examine the simulated flare emissions and energetics due to the modeled CME and find reasonable agreement with flare loop morphologies and energy partitioning in observed solar eruptions. The simulation also provides an explanation for coronal dimming during eruptions and predicts that the structures surrounding the current sheet are visible in X-ray observations.
Forbes Terry G.
Linker Jon A.
Mikic Zoran
Reeves Katharine K.
No associations
LandOfFree
Current Sheet Energetics, Flare Emissions, and Energy Partition in a Simulated Solar Eruption does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Current Sheet Energetics, Flare Emissions, and Energy Partition in a Simulated Solar Eruption, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Current Sheet Energetics, Flare Emissions, and Energy Partition in a Simulated Solar Eruption will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1404555