Computer Science
Scientific paper
Oct 2005
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005natur.437.1140p&link_type=abstract
Nature, Volume 437, Issue 7062, pp. 1140-1143 (2005).
Computer Science
34
Scientific paper
High 3He/4He ratios found in ocean island basalts are the main evidence for the existence of an undegassed mantle reservoir. However, models of helium isotope evolution depend critically on the chemical behaviour of helium during mantle melting. It is generally assumed that helium is strongly enriched in mantle melts relative to uranium and thorium, yet estimates of helium partitioning in mantle minerals have produced conflicting results. Here we present experimental measurements of helium solubility in olivine at atmospheric pressure. Natural and synthetic olivines were equilibrated with a 50% helium atmosphere and analysed by crushing in vacuo followed by melting, and yield a minimum olivine-melt partition coefficient of 0.0025 +/- 0.0005 (s.d.) and a maximum of 0.0060 +/- 0.0007 (s.d.). The results indicate that helium might be more compatible than uranium and thorium during mantle melting and that high 3He/4He ratios can be preserved in depleted residues of melting. A depleted source for high 3He/4He ocean island basalts would resolve the apparent discrepancy in the relative helium concentrations of ocean island and mid-ocean-ridge basalts.
Grove Timothy L.
Hart Stanley R.
Kurz Mark D.
Parman Stephen W.
No associations
LandOfFree
Helium solubility in olivine and implications for high 3He/4He in ocean island basalts does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Helium solubility in olivine and implications for high 3He/4He in ocean island basalts, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Helium solubility in olivine and implications for high 3He/4He in ocean island basalts will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1382443