Astronomy and Astrophysics – Astrophysics
Scientific paper
Apr 1990
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1990apj...353..658l&link_type=abstract
Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 353, April 20, 1990, p. 658-665.
Astronomy and Astrophysics
Astrophysics
3
Current Sheets, Plasma Equilibrium, Solar Corona, Solar Flares, Solar Magnetic Field, Tearing Modes (Plasmas), Magnetohydrodynamic Shear Heating, Skylab Program, Solar Maximum Mission
Scientific paper
Linear tearing modes are studied in a nearly singular forced current-sheet equilibrium, such as could result from global magnetic forces in the solar corona. Growth rates for the tearing modes, determined by solving the linearized reduced MHD (Strauss) equations numerically, were found to scale as (gamma)tau(d) = about S exp 4/5 k(y) exp 4/5, where S is the Lundquist number, k(y) is the wavenumber, and tau(d) is the classical resistive diffusion time. This scaling is in agreement with predictions from analytical theory. Because of the faster S scaling of these modes compared to the tearing modes of a diffuse current-sheet equilibrium, the modes have much higher growth rates (by a factor of about 10,000) for coronal values of S (about 10 to the 12th). For coronal parameters, the growth times of these new modes are estimated to be on the order of several hours to days, as compared to growth times of months to years for the tearing modes in a diffuse current-shear equilibrium. The growth times are comparable to reconnection times scales required in models of coronal heating by magnetic field dissipation.
Liewer Paulett C.
Payne David G.
No associations
LandOfFree
Linear tearing modes of a forced current-sheet equilibrium does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Linear tearing modes of a forced current-sheet equilibrium, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Linear tearing modes of a forced current-sheet equilibrium will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1380237