Other
Scientific paper
May 1996
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1996aas...188.0606a&link_type=abstract
American Astronomical Society, 188th AAS Meeting, #06.06; Bulletin of the American Astronomical Society, Vol. 28, p.830
Other
Scientific paper
Spectroscopic redshifts of faint galaxies require large telescopes and considerable observing time. However, Connolly et al (1995) have shown that broadband photometry in UB_JR_FI_N bands can be used to estimate redshifts to an accuracy of Delta z ~ 0.05 to B_J ~ 22.5 and z ~ 0.5. The accuracy is expected to improve by at least a factor of two with more precise photometry, and the technique can be extended to higher redshift with deeper spectroscopic training sets. Application of this photometric redshift technique represents a 30--fold increase in observing efficiency over multi--fiber spectrographs to this depth. The efficiency increases steeply at fainter magnitudes because of the increasing surface-density of galaxies. We show that the photometric redshift technique can be improved even further by including image structure characteristics as well. After binning a sample by a redshift--independent concentration index, photometric redshifts derived from just B,R and the log of the apparent size theta have dispersions (Delta z) comparable to the four-band fit. This success is due to the strong correlations of apparent surface-brightness with redshift, and rest-frame color to image-concentration. U and I band CCD images require 80% of the observing time to reach the same S/N as B and R for typical galaxy colors. By eliminating the need for these bands, the photometric redshift technique improves in efficiency by another factor of ~ 5, or a net ~ 150--fold improvement over spectroscopic redshifts to B_J=22.5. We discuss one way of exploiting photometric redshift technique to select volume--limited samples of field galaxies. Such samples are particularly well suited for studying the faint end of the luminosity function.
Andersen David R.
Bershady Matthew A.
Jangren Anna
No associations
LandOfFree
Photometric Redshifts Using Galaxy Image Structure does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Photometric Redshifts Using Galaxy Image Structure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photometric Redshifts Using Galaxy Image Structure will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1351824