Statistics – Applications
Scientific paper
Jun 2000
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2000cqgra..17.2385g&link_type=abstract
Classical and Quantum Gravity, Volume 17, Issue 12, pp. 2385-2398 (2000).
Statistics
Applications
127
Scientific paper
We reports improvements to our Sagnac effect matter-wave interferometer gyroscope. This device now has a short-term rotation-rate sensitivity of 6×10-10 rad s-1 over 1 s of integration, which is the best publicly reported value to date. Stimulated Raman transitions are used to coherently manipulate atoms from counterpropagating thermal beams, forming two interferometers with opposite rotation phase shifts, allowing rotation to be distinguished from acceleration and laser arbitrary phase. Furthermore, electronically compensating the rotation-induced Doppler shifts of the Raman lasers allows operation at an effective zero rotation rate, improving sensitivity and facilitating sensitive lock-in detection readout techniques. Long-term stability is promising but not yet fully characterized. Potential applications include inertial navigation, geophysical studies and tests of general relativity.
Gustavson Todd L.
Kasevich Mark A.
Landragin Arnaud
No associations
LandOfFree
Rotation sensing with a dual atom-interferometer Sagnac gyroscope does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Rotation sensing with a dual atom-interferometer Sagnac gyroscope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rotation sensing with a dual atom-interferometer Sagnac gyroscope will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1347937