Quasi-Local Energy for AN Unusual Slicing of Static Spherically Symmetric Metrics

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

1

Quasi-Local Energy, Hamiltonian

Scientific paper

We consider an unusual time slicing for the static spherically symmetric metrics. For the vacuum case this is the Schwarzschild metric in the Painlevé-Gullstrand form. For this slicing the spatial metric is fiat, and the lapse is just unity; all the dynamic geometry is encoded in what is supposed to be a gauge parameter: the shift vector. One consequence is that the standard ADM energy expression vanishes (contrary to the idea that vanishing energy should be Minkowski space). On the other hand, for an appropriate choice of reference and time displacement vector, our preferred quasilocal Hamiltonian boundary term expression gives a finite energy, namely 2M.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Quasi-Local Energy for AN Unusual Slicing of Static Spherically Symmetric Metrics does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Quasi-Local Energy for AN Unusual Slicing of Static Spherically Symmetric Metrics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quasi-Local Energy for AN Unusual Slicing of Static Spherically Symmetric Metrics will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1338470

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.