Determination of the spatial and temporal variation of tropospheric water vapour using CGPS networks

Astronomy and Astrophysics – Astronomy

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4

Climate, Gps, Satellite Geodesy, Tomography

Scientific paper

Tropospheric water vapour is the main limiting factor in using GPS to determine crustal deformation at highest accuracy. On the other hand, it is an important variable to monitor meteorological and climatic processes. This paper discusses both aspects: the modelling of tropospheric water vapour using meteorological data as well as the determination of the integrated amount of water vapour and its spatiotemporal variation using GPS data. Switzerland has been chosen as experiment area. The Swiss continuous GPS (CGPS) network AGNES is used as a reference network, which represents a realistic scenario for GPS-based water vapour determination. Data of the Swiss numerical weather model aLMo are used for systematic comparison and validation.
For the first aspect, integrated tropospheric wet refractivity values are determined from meteorological measurements and compared with GPS path delays. An overall agreement of 1 cm of zenith wet path delay was achieved. For the second aspect a tomographic approach has been developed. A total of 6720 GPS-determined profiles are compared with data of the numerical weather model and radio soundings. The results are statistically evaluated and systematically compared with each other. A correlation between the accuracy and the weather situation was found. Overall, an agreement of 5-7 ppm (refractivity unit) was obtained compared to aLMo.
The use of GPS-determined path delays from a permanent GPS network is the recommended method to correct GPS measurements. In all other cases, the two methods presented (COITROPA, COMEDIE) are a feasible alternative to determine path delays accurately. Furthermore, GPS is a convenient application to determine the amount of water vapour in the troposphere. It is demonstrated that the vertical distribution of water vapour can be deduced by applying the tomographic approach.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Determination of the spatial and temporal variation of tropospheric water vapour using CGPS networks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Determination of the spatial and temporal variation of tropospheric water vapour using CGPS networks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Determination of the spatial and temporal variation of tropospheric water vapour using CGPS networks will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1314805

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.