Cut from Different Cloth

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

A large survey, made with ESO's VLT, has shed light on our Galaxy's ancestry. After determining the chemical composition of over 2000 stars in four of the nearest dwarf galaxies to our own, astronomers have demonstrated fundamental differences in their make-up, casting doubt on the theory that these diminutive galaxies could ever have formed the building blocks of our Milky Way Galaxy.
"The chemistry we see in the stars in these dwarf galaxies is just not consistent with current cosmological models," said Amina Helmi of the Kapteyn Astronomical Institute in Groningen, The Netherlands, and lead author of the paper presenting the results. "It shows that there is plenty of astronomy to learn in our backyard."
Our Milky Way Galaxy is surrounded by a number of dwarf satellite galaxies, which because of their loosely rounded shape are referred to as 'dwarf spheroidal' galaxies. Faint and diffuse, these dwarf galaxies are a thousand times fainter than the Milky Way itself, making them the least luminous galaxies known.
ESO PR Photo 41/06 ESO PR Photo 41/06
Chemical Abundance in Dwarf Galaxies
Modern cosmological models predict that small galaxies form first, and later assemble into larger systems like our Galaxy. Since the Universe initially only contained hydrogen and helium (most of all other chemical elements being synthesized inside stars), dwarf galaxies should have the lowest heavy element [1] content. Not so, say the astronomers.
As part of a large observational programme, the Dwarf galaxies Abundances and Radial-velocities Team (DART), Helmi and her colleagues from institutes in 9 different countries used the FLAMES [2] instrument on ESO's Very Large Telescope to measure the amount of iron in over 2000 individual giant stars in the Fornax, Sculptor, Sextans and Carina dwarf spheroidals [3].
Their data unearthed fundamental differences in the dwarf galaxy stars' chemical composition compared with those in our galactic halo, calling into question the merger theory as the origin of large galaxies' haloes. Whilst the average abundances of elements in the dwarf spheroidals is comparable with that seen in the Galactic halo, the former are lacking the very metal-poor stars that are seen in the Milky Way - the two types of systems, contrary to theoretical predictions, are essentially of different descent.
"Our results rule out any merging of the nearby dwarf galaxies as a mechanism for building up the Galactic halo, even in the early history of the Universe," said Helmi. "More detailed chemical abundance studies of these systems are needed, as this will tell us more about what happened at those early epochs in our local Universe".

No affiliations

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Cut from Different Cloth does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Cut from Different Cloth, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cut from Different Cloth will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1314599

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.