Astronomy and Astrophysics – Astrophysics
Scientific paper
Jan 1993
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1993phdt........49h&link_type=abstract
Thesis (PH.D.)--YALE UNIVERSITY, 1993.Source: Dissertation Abstracts International, Volume: 54-06, Section: B, page: 3146.
Astronomy and Astrophysics
Astrophysics
1
Scientific paper
The 14O(alpha,p) 17F and ^ {17}F(p,gamma)18Ne reactions play crucial roles in the advanced stages of astrophysical hydrogen burning. The ^{14 }O(alpha,p)^ {17}F(p,gamma) ^ {18}Ne(beta^+nu) 18F(p,alpha)^ {15}O reaction sequence can provide a path around the relatively slow positron decay of 14O in the HCNO cycle, while the similar reaction sequence, ^{14 }O(alpha ,p) 17F(p,gamma)^ {18}Ne(beta ^+nu) 18F(p,gamma)^ {19}Ne, can provide an alternate path from the HCNO cycle to the rp-process. The 17F(p,gamma)18Ne reaction rate could provide the principal source of 18O. Under some astrophysical conditions, the ^{14 }O(alpha,p)^ {17}F reaction is expected to compete with the 15O(alpha, gamma)19Ne reaction in providing a path through which nuclei involved in the HCNO cycle can be transformed into heavier nuclei with Z >= 10.. In order to better determine the rates of these two reactions, we measured the properties of the resonances in 18Ne; the excitation energies, the spins, and the partial and total widths of the relevant resonances. By comparing the previously observed states in 18Ne to the well-studied isospin mirror nucleus, ^{18 }O, it is clear that there are a number of missing levels in 18Ne in the region rm Ex > 4 MeV. These missing states in ^ {18}Ne could be important in determining the 17F(p, gamma)18rm Ne and 14O(alpha ,p)17F reaction rates. We have studied the ^{12 }C(12C,^6He)^{18 }Ne, 20rm Ne(p{,}t)18Ne, and 16O(^3He{, }n)18Ne reactions to measure new nuclear structure information of ^{18 }Ne. From our experiments, we have the following major results: (a) an evidence of the 3^+ <=vel at E_{rm x} = 4.56 MeV, (b) new levels at E_ {rm x} = 6.15 MeV, 7.12 MeV, 7.35 MeV, 7.62 MeV, 8.30 MeV, (8.45 MeV), 8.55 MeV, 8.94 MeV, and 9.58 MeV. (c) new J^pi assignments to the 5.11/5.15-MeV doublet and the 6.15-MeV state. Our discovery of the 3^+<=vel at an energy ~230 keV higher than calculated by Wiescher, Gorres, and Thielemann causes the contribution of the 17 F(p,gamma) reaction rate to be about two orders of magnitude smaller than they expected. Two recent calculations of the ^{14 }O(alpha,p)17F reaction rate by Funck et al. and Wiescher et al. have based on theoretical predictions and incomplete experimental information about the level structure of 18 Ne in the energy region of rm E_ {x} > 5.0 MeV. On the basis of the nuclear structure information for 18 Ne measured in our experiments, we have improved the calculation of the ^{14 }O(alpha,p)17F reaction rate.
No associations
LandOfFree
The FLUORINE-17(PROTON, PHOTON)NEON-18 and Oxygen -14(ALPHA Particle, PROTON)FLUORINE-17 Reaction Rates and the Structure of NEON-18 (NEON-18, FLUORINE-17, Oxygen -14, Astrophysical Hydrogen Burning) does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The FLUORINE-17(PROTON, PHOTON)NEON-18 and Oxygen -14(ALPHA Particle, PROTON)FLUORINE-17 Reaction Rates and the Structure of NEON-18 (NEON-18, FLUORINE-17, Oxygen -14, Astrophysical Hydrogen Burning), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The FLUORINE-17(PROTON, PHOTON)NEON-18 and Oxygen -14(ALPHA Particle, PROTON)FLUORINE-17 Reaction Rates and the Structure of NEON-18 (NEON-18, FLUORINE-17, Oxygen -14, Astrophysical Hydrogen Burning) will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1264444