Computer Science
Scientific paper
Nov 2001
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2001cosre..39..607k&link_type=abstract
Cosmic Research, v. 39, Issue 6, p. 607-614 (2001).
Computer Science
Scientific paper
The motion of a spherically symmetric balloon satellite near the equatorial plane is considered. Taking the Earth's oblateness and solar light pressure into account, the integral of motion can be obtained under certain simplifications. The eccentricity is related to the solar angle which represents an angle between pericenter and the Sun. This analytical approximation describes a large and complicated evolution of the eccentricity in corresponding areas of the phase space and the space of parameters. Phase portraits contain fixed saddle points and separatrices that divide different types of oscillations of the eccentricity. In the unsimplified problem, separatrices break down, and specific stochastic motions arise. The aims of the present study are (1) evaluation of the accuracy of analytical approximation with the help of numerical integration using a sufficiently complete model of motion and (2) numerical investigation of stochastic motions and dimensions of stochastic zones in the region of broken separatrices for an adequate model of motion. For a balloon satellite with a semimajor axis of 2.15 Earth's radii and a windage of 30 cm^2/g the dimensions of a stochastic zone in eccentricity and solar angle are 10^-5and 0.1°, respectively. The analytical approximation describes the orbit evolution in the right way, except for the cases of large eccentricities, e> 0.4, which corresponds to a pericenter height of less than 1400 km, where the atmospheric drag is already significant.
Kuznetsov Eh. D.
Sokolov L. L.
No associations
LandOfFree
Nonlinear Evolution of a Balloon Satellite Orbit does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Nonlinear Evolution of a Balloon Satellite Orbit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nonlinear Evolution of a Balloon Satellite Orbit will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1235465